skip to main content


Search for: All records

Creators/Authors contains: "Richlen, Mindy L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Ciguatera poisoning (CP) poses a significant threat to ecosystem services and fishery resources in coastal communities. The CP-causative ciguatoxins (CTXs) are produced by benthic dinoflagellates including Gambierdiscus and Fukuyoa spp., and enter reef food webs via grazing on macroalgal substrates. In this study, we report on a 3-year monthly time series in St. Thomas, US Virgin Islands where Gambierdiscus spp. abundance and Caribbean-CTX toxicity in benthic samples were compared to key environmental factors, including temperature, salinity, nutrients, benthic cover, and physical data. We found that peak Gambierdiscus abundance occurred in summer while CTX-specific toxicity peaked in cooler months (February–May) when the mean water temperatures were approximately 26–28 °C. These trends were most evident at deeper offshore sites where macroalgal cover was highest year-round. Other environmental parameters were not correlated with the CTX variability observed over time. The asynchrony between Gambierdiscus spp. abundance and toxicity reflects potential differences in toxin cell quotas among Gambierdiscus species with concomitant variability in their abundances throughout the year. These results have significant implications for monitoring and management of benthic harmful algal blooms and highlights potential seasonal and highly-localized pulses in reef toxin loads that may be transferred to higher trophic levels. 
    more » « less
  3. null (Ed.)
  4. Among the organisms that spread into and flourish in Arctic waters with rising temperatures and sea ice loss are toxic algae, a group of harmful algal bloom species that produce potent biotoxins. Alexandrium catenella , a cyst-forming dinoflagellate that causes paralytic shellfish poisoning worldwide, has been a significant threat to human health in southeastern Alaska for centuries. It is known to be transported into Arctic regions in waters transiting northward through the Bering Strait, yet there is little recognition of this organism as a human health concern north of the Strait. Here, we describe an exceptionally large A. catenella benthic cyst bed and hydrographic conditions across the Chukchi Sea that support germination and development of recurrent, locally originating and self-seeding blooms. Two prominent cyst accumulation zones result from deposition promoted by weak circulation. Cyst concentrations are among the highest reported globally for this species, and the cyst bed is at least 6× larger in area than any other. These extraordinary accumulations are attributed to repeated inputs from advected southern blooms and to localized cyst formation and deposition. Over the past two decades, warming has likely increased the magnitude of the germination flux twofold and advanced the timing of cell inoculation into the euphotic zone by 20 d. Conditions are also now favorable for bloom development in surface waters. The region is poised to support annually recurrent A. catenella blooms that are massive in scale, posing a significant and worrisome threat to public and ecosystem health in Alaskan Arctic communities where economies are subsistence based. 
    more » « less
  5. null (Ed.)
  6. Abstract

    Over the past two decades, scientific research on the connections between the health and resilience of marine ecosystems and human health, well‐being, and community prosperity has expanded and evolved into a distinct “metadiscipline” known as Oceans and Human Health (OHH), recognized by the scientific community as well as policy makers. OHH goals are diverse and seek to improve public health outcomes, promote sustainable use of aquatic systems and resources, and strengthen community resilience. OHH research has historically included some level of community outreach and partner involvement; however, the increasing disruption of aquatic environments and urgency of public health impacts calls for a more systematic approach to effectively identify and engage with community partners to achieve project goals and outcomes. Herein, we present a strategic framework developed collaboratively by community engagement personnel from the four recently established U.S. Centers for Oceans and Human Health (COHH). This framework supports researchers in defining levels of community engagement and in aligning partners, purpose, activities, and approaches intentionally in their community engagement efforts. Specifically, we describe: (a) a framework for a range of outreach and engagement approaches; (b) the need for identifying partners, purpose, activities, and approaches; and (c) the importance of making intentional alignment among them. Misalignment across these dimensions may lead to wasting time or resources, eroding public trust, or failing to achieve intended outcomes. We illustrate the framework with examples from current COHH case studies and conclude with future directions for strategic community engagement in OHH and other environmental health contexts.

     
    more » « less